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Active sonar performance is limited by noise, reverberation or false alarm rate (FAR). High FAR is overcome 
through the use of signal classification, which depends on the information content of the signals. Information 
content and classification are addressed using a set of broadband sonar echoes. The set of broadband echoes  
generated by an explosive source scattered from 30 different geographic locations is described. A continuous 
wavelet  transform  is  shown  that  simulates  the  audible  content  of  the  echoes.  The  root-mean-square  log 
scalogram distance, an audio distance defined with wavelet scalograms, between echoes is shown to decrease 
with decreasing sonar-source bandwidth. Results from multidimensional scaling (MDS), additive tree analysis,  
and exit interviews from a previous human subject listening study are shown. The results suggest that subjects  
use  a  process  other  than  one  defined  by  a  single  feature  space.  A  human-subjects-research  experimental 
protocol is described that will elucidate an alternative approach to signal classification. Funding was provided 
by the Office of Naval Research of the United States Navy.

1 Introduction

This  paper  presents  continuing  work  on  the  problem of 
active sonar classification using broadband signals.   The 
long  term  goal  of  the  project  is  the  development  of 
numerical methods that emulate the processes that people 
use to categorize or classify sonar echoes. 
In  previous  work,   impulsive,  broadband  sonar  signals 
were  used  in  a  psychoacoustic  studies  [1,2,3,4,5].  The 
psychoacoustic  listening  studies  measured  listeners' 
assessments  of  dissimilarity  between  pairs  of  echoes, 
sequentially  presented  diotically,  viz.,  the  same  signal 
presented  identically  to  both ears.  Freely elicited,  verbal 
descriptions of each signal were also recorded from each 
listener during individual exit interviews.
The two kinds of data collected support different types of 
perceptual  models.  The  collected  dissimilarities  form  a 
dissimilarity  matrix  of  numbers,  with  larger  numbers 
corresponding  to  greater  dissimilarities  between  two 
signals. A value of zero signifies identical sounds; the main 
diagonal of the dissimilarity matrix should contain zeros. 
The  dissimilarity  matrix  was  analyzed  with 
multidimensional scaling (MDS) that assumes a model of 
perception based on a linear vector space. MDS generates a 
linear vector space with each signal represented as a point 
in that space. Distances between point pairs represent the 
quantitative dissimilarities. The space is generated through 
a numerical fit of the distances to the dissimilarities in the 
matrix. This space with echoes as points is suggestive of a 
feature space found in classification where each signal is 
described with a feature vector [6].
However,  other  psychoacoustic  models  of  dissimilarity 
exist, e.g., the contrast model of Tversky [7]. In this model 
dissimilarities  are  modeled  with  a  metric  based  on  set 
theoretic  descriptions  of  the  signals.  For  example,  one 
signal may have a set of qualities like {medium frequency, 

muffled}, whereas another may have a set of qualites like 
{medium  frequency,  cannon}.  The  contrast  distance  is 
defined as a linear function that is a weighted sum of the 
common  and  distinct  features.  It  is  not  a  linear  vector 
space.  This  approach  does  not  appear  to  have  been 
followed in the sonar classification literature. 
This  paper  describes  the  early  stages  of  research  using 
another  impulsive  sonar  echo  data  set.  This  set  was 
generated in the Boundary 04 experiment. The first section 
of this paper has a short description of the Boundary 04 
data  set  [4,8],  followed  by  two  sections  describing 
psychoacoustic  inspired  definitions  of  distances,  with  a 
description of the protocol for human subjects research that 
will be used to distinguish different types of perception and 
guide development of new classification methodologies.

2 Data Description

The data used are  described  in  [4,8].  There  are  28 data 
classes  each  caused  by  reflections  from  a  distinct 
geographic location in the experiment. Each class contains 
example signals, or elements.  Figure 1 below shows that 
classes  28  and  29  contains  62  and  36  elements, 
respectively. Classes 3, 5, 6, 13, 14 and 23 contain fewer 
than three elements. 
Each  example  signal  is  a  noisy,  broadband  echo.  Each 
signal  contains  different  background  noise  because  the 
signals  were  recorded  from  different  beams  at  different 
times.  Therefore,  there  is  a  wide  variety  of  background 
noise sources, e.g., from surface ships. Human listeners are 
able to perceive the impulsive echo as an aural object that 
is  distinct  from  the  background  noise.  In  the  first 
experiment,  listeners  were  instructed  to  ignore  the 
background  noise  and  judge  the  dissimilarities  of  the 
echoes only.  Likewise,  human mimetic signal  processing 
algorithms ideally would ignore the background noise, too. 



The  next  section  discusses  the  signal  processing  steps 
taken to address those two concerns.

Figure 1 Histogram of Boundary 04 echoes in classes 0 
through 29.

3 Signal Processing

3.1 Preliminary processing

The  mitigation  of  the  effects  of  background  noise  is 
accomplished in two steps. A wavelet domain is defined in 
a way that emulates aural perception. The signals are first 
transformed  into  the  scale-  time  domain  using  the 
continuous  wavelet  transform  [9,10]  using  the  wavelet 
kernel

W  s , t =cos st /2 i eiQ st  ,−1st1 (1)
with  scale s=2 f /Q and  with Q ,  the  number  of 
cycles in the wavelet, being set to six to simulate the the 
aural bandwidth of a gammatone filter, forming

X c ,m s , t =∫
0

T

W s , t  xc ,m t dt . (2)

The subscript c  denotes the class of clutter and m  
the index of the particular element of that class. 
The integral  is evaluated numerically using a summation 
over values of scale chosen to cover the frequency band 
from  200  to  1800  Hz  with  constant  Mel  spacing 
determined with the formula 

f =1000 2 Mel /1000−1 . (3)

The fineness  of  the  Mel  interval  is  adjusted  so  that  the 
impulse  response  function  of  the  wavelet  transform 
smoothly  covers  the  frequency  interval  of  interest.  This 
ensures that signals – that  are transformed into the wavelet 
domain, filtered and then transformed back into the time 
domain – are not distorted by the transform itself. 
This signal domain produces a two-dimensional visual, and 
also quantitative, representation of the signal that crudely 

mimics the audibility of the signal. The cognitive process 
of separating the echo, or foreground, from the noise, or 
background, is modeled by equalizing the noise level over 
the frequency band. An example noise-equalized signal is 
shown in Figure 2 where ∣ X 28,12 f /Q , t ∣ is displayed.
The  noise  equalized  signals  have  background  noise  that 
sounds  very  uniform  over  all  the  elements  of  all  the 
classes. The echo components  have different amplitudes, 
but the background noise levels are all equal. This should 
decrease the effects of background noise differences on the 
listeners' judgments of dissimilarity. 
Although  the  noise-equalized  signals  have  uniform 
background noise, the amount of background signal energy 
may not be negligible when signal processing algorithms 
are  used  to  compute  the  distances  between  signal  pairs. 
This  problem  arises  for  algorithms  that  mimic  human 
perceptions of signal dissimilarity. In this paper, we use the 
term  dissimilarity to refer to a human perception and the 
term distance to refer to the output of an algorithm. 
With the goal of eliminating as much background noise as 
possible, the noise-equalized signals are denoised using a 
binary mask applied in the wavelet  domain [11,12]. The 
binary filter equals unity at a value of scale and time if the 
value of the wavelet transform there exceeds a threshold; 
otherwise the binary filter has a value of zero. The binary-
masked signals are perceived by the lead author as  abrupt 
compared with the noise-equalized signals. The perceived 
differences are probably due to the inability of  a human 
listener to accommodate to the background noise over the 
short duration of the binary-masked signal. These binary-
masked signals are used for the estimation of information 
content  because  they  have  the  highest  signal  energy  to 
noise  energy  ratio  possible  from filtering in  the wavelet 
domain. The higher SNR improves the meaningfulness of 
the information estimates. In other words, the estimates of 
information content of the signals are contaminated by the 
least amount of noise. The denoised  signals are denoted as 

X  f , t  in  the  scalogram  domain  and xt  in  the 
time domain.

Figure 2 Scalogram ∣ X 28,1 f ,t ∣  of the normalized 
signal class 28 number 1 



Figure 3 Scalogram ∣ X 28,1 f ,t ∣  of the denoised signal 
class 28 number 1.

3.2 Linear vector space distances

In  previous work, eleven human subjects were presented 
with pairs of impulsive sonar signals, similar to those from 
Boundary  04.  Each  subject  judged  the  dissimilarity 
between the signals  on a scale of  zero to ten,  with zero 
denoting  the  perception  of  two  identical  signals.  The 
dissimilarity matrices of  subjects  who generated   similar 
results  were  averaged  and  analyzed  using  MDS.  The 
resulting three dimensional space is shown below in Fig. 4.
In Fig. 4, the signals are classed as either target T or clutter 
C  followed  by  an  integer  element  number.  In  this 
representation several clusters appear, indicating that there 
is not a single clutter region, but rather that there are two 
clutter groups that sound as distinct from each other as they 
do from the cluster of target echoes. 
The existence of more than one clutter group indicates that 
experimenting with a data set containing more tags than T 
and  C could  confirm the  existence  of  different  kinds  of 
clutter sources that are aurally distinct.

Figure 4 Resulting MDS representation of human-subjects 
data from a previous listening study

A natural interpretation of the configurations produced in 
the MDS solution is the assignment of aural features to the 
three axes of MDS space, or to a set of trajectories in MDS 
space [13,14]. The ultimate purpose is the replacement of 
human listeners  with an algorithm. The algorithm would 
determine  the  aural  features  from  a  signal  and  then 
transform  the  aural  feature  vector  onto  the  axes  of  the 
space  generated  from  MDS  listening  studies.  Decision 
boundaries that demarcate class boundaries in MDS space 
would then, in principle, mimic the behavior of a human 
listener. 
An  early  step  in  the  understanding  of  the  relationship 
between signal distance and human-subject dissimilarity, is 
the  development  and  study  of  algorithms  that  compute 
distances between signal pairs. A distance that is based on 
a  simple  signal-representation  is  the  RMS  log  spectral 
distance[15].  This  distance  is  modified  for  use  with  the 
scalogram representation of two signals X c , m f , t  and 

X d , n f , t 

  

DRMS  X c ,m , X d ,n ; B=C 1∑
t=0

T

∑
f ∈B

C2 f , t
1
2

C1=
1

N t N f

C2 f , t =log∣ X c ,m f , t ∣−log∣ X d ,n f , t ∣2

. (4)

Bandwidth is denoted as B . Note that the dependence 
on frequency and time is suppressed for simplicity in Eq. 4. 
Equation 4 is used to find distances between a selection of 
individual echoes. 
The  set  of  nine  signals  [{21,2}  {2,14}  {22,2}  {24,1} 
{26,2}  {1,1}  {3,1}  {4,1}  {10,2}]  were  chosen  because 
they have similar signal to noise ratio (SNR). The distances 
between all signal pairs is computed using Eqn. 4 and the 
results are displayed as distance matrices in Figs. 4 and 5 
and histograms in Figs. 6 and 7. Figures 4 and 6 show the 
dissimilarity matrices for the broad-band case [200 Hz < f 
<  1800 Hz]. Figures 5 and 7 show the narrow-band case 
[900 Hz < f < 1000 Hz]. 
In Figs. 4 and 5, the horizontal and vertical axes are labeled 
with the class number c and the element number m . 
The signals are ordered in terms of decreasing SNR. The 
distance  between  a  signal  on  the  horizontal  axis  and  a 
signal on the vertical axis is displayed using a gray scale. 
The gray scale is scaled to the maximum distance in each 
figure and the units are arbitrary but consistent between the 
two figures.  The main diagonal values of zero show that 
each  signal  has  a  zero  distance  from  itself,  which  is  a 
requirement for the definition of distance. In Fig. 4, several 
signals have a significant distance from the others. Signals 
T26N2  and  T4N1  are  quite  distinct  from  most  other 
signals, including each other. Contrast this situation to that 
seen  in  Fig.  5,  where  only  one  signal,  T26N2,  is  very 
distinct from the others. The distinctiveness of T4N1 has 
been  removed  through  the  selection  of  the  narrower 
frequency band.



Figure 4 RMS log spectrogram distance matrix of broader 
bandwidth signals with 200 Hz < f <  1800 Hz

Figure 5 RMS log spectrum distance matrix with narrower 
bandwidth signals with  900 Hz < f < 1000 Hz

This loss of distinctiveness can be seen in Figs. 6 and 7 that 
depict the distribution of distances as histograms. Figures 6 
and 7 are plotted with the same horizontal scale that shows 
the  distances,  with  the  vertical  scale  showing  the  total 
number  of  signals  falling  within  the  interval.  Figure  6 
shows the broader and more evenly distributed distances 
between  the  broader  bandwidth  signals.  The  broad  and 
even distribution shows that the signals in general have an 
appreciable  distance between each  other.  If  this  distance 
model  mimics  human  perception,  then  human  subjects 
likewise  would  perceive  appreciable  dissimilarities 
between pairs of signals. 
In  contrast,  the  distribution  found  with  narrower  band 
signals shown in Fig. 7 is bunched to the left portion of the 
horizontal axis, showing that the distances are small. Not 
only  are  the  distances  small,  but  the  distribution  is  not 
evenly spread over those small values. This is indicative of 
a clustering of the signals. In this case, one of the clusters 
would contain only one signal,  T26N2, which is distinct 
from all other signals.  

Figure 6 Histogram of RMS log spectrogram distances 
with broader band signals

Figure 7 Histogram of RMS log spectrogram distances 
with narrower band signals.

These results qualitatively follow human experience where 
perception of  signals  is  limited by the bandwidth that  is 
presented  to  listeners.  These  distances  above  will  be 
compared  with  the  dissimilarities  determined  through 
human  listening  studies.  Through  this  quantitative 
comparison to human perception, the quality of alternative 
signal distances can be assessed.  

3.3 Information based class distances

A  method  of  assessing  the  distance  between  groups  or 
classes of signals also may be useful. Computing interclass 
distances could be based on the RMS log spectral distances 
defined  with  Eqn.  4  when  combined  with  a  method  of 
clustering that defines distances between groups of signals 
as well as individual signals [16, 17]. An alternative to this 
is  a  method  based  on  information  theory  that  naturally 
applies to groups. The  a priori grouping of the impulsive 
sonar  signals  in  the  Boundary  04  data  set  into  classes 
enables the use of this information based technique.  The 



Shannon distance is based on the distinctiveness between 
the information found between classes [18]. The amount of 
information in a class c of denoised signals  x ct  is 
determined with the formula 

H  xc= ∑
x∈ xc t

P  xlog2P  x , (5) 

where  P x  is  the  probability  of x that  is  a 
component of class c  and where the summation is over 
statistically  independent  components.  In  this  paper,  the 
statistically independent components are generated from a 
finite set of signals using the singular value decomposition 
(SVD).  This  formula  is  based  on  the  assumption  that 
within each class each signal is equally likely. The signals 
in the class  xc  are first peak aligned. This alignment 
creates  the largest  common signal  and therefore  predicts 
the  lowest  information  content  for  the  collection  of 
impulsive signals. Using SVD, the signals in class c are 
decomposed  into  expansion  functions  l t that  are 
orthogonal  over  summation  of   m in  class  c , 
namely

xc , mt =∑
l=0

L

c , m, ll t .  (6)

For each  l , the set of expansion coefficients  c ,m , l  
are  then  converted  into  histograms  using  a  common 
amplitude  bin  width.  This  bin  width  corresponds  to  the 
noise  level  used  in  signal  information  theory.  The 
probabilities of each quantized coefficient  value are then 
used in Eqn. (5). 
The information within a signal class is representative of 
the   variability  within  that  signal  class.  In  the  context 
considered here,  if  a  class contained only one noise-free 
signal,  then  it  would  be  described  with  only  one  bit 
because  there  is  only one  expansion  coefficient  and  the 
signal  is  either  present  or  absent.  If  two  signals  were 
present  and  statistically  orthogonal  using  the  heuristic 
method  above,  then  there  would  be  two  expansion 
coefficients  and  the  the  class  would  carry  two  bits  of 
information.
The  Shannon  distance  is  a  measure  of  the  amount  of 
distinct information between two classes of signals,  c  
and d , and is defined as

DS c , d =2 H  xc , xd−H  x c−H  xd  , (7)
using the definition of information in Eq. 5 and where the 
summation is over the probabilities that the signal lies in 
quantized,  statistically  independent  intervals x of  the 
whole  signal  space X c .  The  determination  of  these 
quantities  is  performed  on  the  denoised,  frequency-
normalized signals in the time domain, as opposed to the 
scale-time  domain,  due  to  their  smaller  dimension  and 
limited computer memory.
The  change  of  information  content  and  the  Shannon 
distance between classes 24 and 26 is shown in the Fig. 8 
below. Figure 8 shows the amount of information in class 
24 with the + symbol and class 26 with the x symbol. The 
Shannon distance  is  displayed  as  circles.  The horizontal 

axis is bandwidth centered at 1000 Hz. Note the clear trend 
of  decreasing  information  content  and  distance  with 
decreasing  bandwidth.  There  is,  however,  a  lack  of 
smoothness in the frequency dependence. 

Figure 8 Shannon distance between classes 6 and 21 as a 
function of bandwidth centered at 1000 Hz

This  lack  of  smoothness  is  the  result  of  the  discrete 
disappearances  of  contributing  expansion  coefficients  in 
the Eqn. 5. Indeed, there are only three and four elements 
in the classes 24 and 26, respectively.  Classes with more 
elements  show  smoother  behavior  due  to  the  greater 
number of m values for each l  in Eqn. 5. 
Another  observation  from  Fig.  8  is  that  the  signal 
information  and  Shannon  distances  are  not  uniformly 
dependent on bandwidth. This is caused by the nonuniform 
distribution  of  signal  energy  over  frequency.  The signal 
classes  are  not  uniformly  broadband.  This  also  causes 
abrupt changes in the amount of information in the groups 
of signals. 

Figure 9 Shannon distance between classes 28 and 29 that 
contain many elements

The smoother behavior resulting from more class elements 
in shown in Fig. 9 where there is smooth and monotonic 



dependence  of  information  with  bandwidth.  These  two 
signal classes have signal content from 200 to 1800 Hz, as 
is seen in the scalogram of a class 28 signal shown in Fig. 
2.  There  is  uniform  frequency  dependence  of  class  28 
information content. The frequency dependence of class 29 
is not as uniform, with a steeper dependence between 1300 
to  1600  Hz  bandwidths.  This  is  due  to  less  uniform 
frequency distribution of signal energy in class 29. 

3.4 Future Work

Future  work  has  two  general  components,  signal 
processing  and  human  subjects  research.  Some  of  the 
preliminary signal processing is presented here.  
A human subjects experiment will be conducted to study 
more carefully how people compare one signal to another 
in this class of active sonar echoes.  Presently,  our plans 
are to select ten stimuli from archived data collected on the 
Malta  Plateau.   This  will  give  us  a  10x10  comparison 
matrix,  which  results  in  100  possible  ordered  pairings, 
including those on the principal diagonal.  Participants will 
be asked to aurally discriminate between each pair twice, 
for a total of 200 judgments.  Next, we will ask participants 
to  freely  group  these  ten  sounds  into  clusters  of  their 
choosing.  After they have done this, they will be asked to 
explain why they clustered the sounds in the way they did. 
We anticipate participants’ explanations will lead to a set 
of freely elicited aural descriptors for each sound.  Finally,  
participants will be presented with a set of predetermined 
descriptors,  such as  loud and  high frequency.  They then 
will be asked to rate the appropriateness of each descriptor 
to  each  sound.   The  psychoacoustic  data  from  the  full 
experiment will be used to explore both continuous (e.g., 
multidimensional  scaling)  and  non-continuous  (e.g.,  set-
theoretical constructs, such as additive trees) psychological 
representations  of  the  aural  stimuli.   Additionally,  the 
descriptor data will be used to explore the correspondence 
between  physical  features  and  how  people  verbally 
characterize sounds. 
The dissimilarity  data  from the human subjects  research 
will   be compared  with the RMS log spectral  distances, 
information based distances, and other distances that may 
be implied by the behavior of the dissimilarities. 
Likewise the relationship between the aural descriptors and 
the information content of the clutter groups will also be 
investigated.  Some  aural  descriptors,  such  as  low 
frequency,  clearly  imply  some  straightforward  timbrel 
features. However other descriptors, such as cannon, seem 
to signify membership is a set of signals, that is defined by 
a  physical  response  of  some  mechanical  arrangement. 
These  information  based  methods  do  not  generate  aural 
features from a signal, but instead generate a set of signals, 
membership  of  which  can  then  be  tested  using  signal 
processing algorithms.  
In summary, the future work entails measuring new human 
responses to sonar sounds and then developing methods to 
simulate  them with  the  hope  that  the  ability  to  classify 
sonar echoes will be improved. 
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